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ABSTRACT 
In this paper, we describe: 

(i) a significant evolution to computer security architec-
tures and secure communications MILS (Multiple In-
dependent Levels of Security/Safety) capable of the 
high assurance to support MLS (Multi-Level Secu-
rity) systems without the complexity of traditional 
MLS systems, 

(ii) the MILS RTOS Partitioning Kernel architecture, 

(iii) the MILS secure communications Partitioning Com-
munications System architecture, 

(iv) Real-time MILS CORBA, and 

(v) industry efforts to provide implementations of this ar-
chitecture. 

KEYWORDS 
MILS, security, high assurance, Common Criteria, EAL-7, 
Real-time CORBA, distributed systems  

SECURITY EVOLUTION 

Fail-First Patch-Later 
Most commercial computer security architectures are a reac-
tive result of problems that have resulted from insecure op-
erating system and communications architectures. 

This  fail-first patch-later approach is inappropriate for the 
communications infrastructure supporting mission-critical 
telecommunications, data communications, utilities, trans-
portation, aerospace, defense, financial, and similar mission-
critical systems.  The fail-first patch-later approach to 
computer security has interfered with the ability of intellec-
tual property-based businesses such as the entertainment 
industry to guarantee product access and use control that 
is  essential for recovering the large financial investments 
used to create these information products. 

In addition, more and more critical infrastructure systems 
are accessible directly and indirectly through the Internet. 
The Washington Post reported that the FBI is concerned 
about the threat of terrorists attacking these critical infra-
structure systems by leveraging flaws in computer security 
systems: 

U.S. analysts believe that by disabling or taking 
command of the floodgates in a dam, for exa mple, 
or of substations handling 300,000 volts of elec-
tric power, an intruder could use virtual tools to 
destroy real-world lives and property. They sur-
mise, with limited evidence, that al Qaeda aims to 
employ those techniques in synchrony with “ki-
netic weapons” such as explosives. 

Foundational Threats 
Systems and application software is only as good as the 
foundation it is built upon. If malicious software can suc-
cessfully attack the system’s foundation can render almost 
any form of system or application security useless. 

Foundational threats include: 

§ Bypass—malicious software circumvents the system‘s 
protection. If critical security software can be bypassed 
there is no assurance that application programs using 
security services are safe. 

§ Compromise—malicious software can read private data 
of other programs. If invasive software, like the spyware 
so common in today’s Internet environment, can moni-
tor the data of other programs then entire system secu-
rity is suspect. 

§ Tamper—malicious software modifies the sensitive data 
of other programs. If tamper is possible then no applica-
tion is safe from viruses, worms, etc. 

§ Cascade—malicious software causes failures to cascade 
from one system component to another. If a failure of 
one application can cause failure of another application 
it may be possible for much greater system failure. A no-
table example of unintentional failure cascade is a Navy 
cook who entered zero into a window that asked for a 



Embedded Systems Conference 2004  ESC-247 & ESC-267 

  January 2004 

number one to ten.  The application divided by zero. 
This caused other applications failed. Eventually the 
O/S failed. The hard drive got screwed up. The system 
would not reboot. The ship was towed to shore. 

§ Covert Channel—malicious software that can leak in-
formation through a communication channel that is a 
side effect of the primary communication intent.  For ex-
ample, by detecting the presence or absence of a mes-
sage an observer can derive information as to the activ-
ity of the communicating parties. If there are covert 
channels available a malicious communicating party can 
leak any information to the observing party by creating 
intentional timing messages in an arranged pattern. 

§ Virus—malicious software that runs at privileged levels 
so that it can infect all parts of the system and other 

systems. What is necessary is an architecture that en-
forces and manages the concept of least privilege. Then 
when a compromise occurs it damage is local, its damage 
can be detected, and recovered from. A big part of coun-
tering the computer virus problem is kicking device driv-
ers and applications out of privilege mode. 

§ Subversion—malicious software is loaded by a user 
who thinks the software is legitimate.  All code needs to 
be signed or it does not even load. The source of all 
software must be traceable to the original author. Soft-
ware authors should follow good software engineering 
practices. Preventing subversion is everyone's respon-
sibility. 

The following example highlights the foundational threats in a notional architecture for a soft drink manufacturer: 
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Figure 1 
 

Successful soft drink manufacturers protect their product 
formulary above all else. A competitor who gains access to 

the formula to a successful drink can quickly steal market 
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share. Thus, the soft drink manufacturer requires that prod-
uct formulary is kept separate from other data. 

The problem is that without a strong foundation for guaran-
teeing that separation putting the product formulary on the 
same computers that have other business data and public 
data would subject their most prized secret to great peril 
from the bypass, compromise, tamper, cascade, covert 
channel, virus, and subversion threats. The soft drink 
manufacturer would be forced to rely on physical separation 
by prohibiting connecting the computers containing the 
product formulary to any other computers. 

Trusting the Foundation 
An alternative to the fail-first patch-later approach is to 
use an approach designed to protect highly secure military 
systems.  By mathematically verifying the core, trusted 
components of the operating system and communications 
system the potential for the system to fail its security objec-
tives is dramatically reduced. 

The history of past efforts to produce mathematically veri-
fied general purpose systems software is littered with com-
mercial and financial failures. These efforts were all focused 
on the achieving the higher assurance levels in the U.S. 
DoD Orange Book. 

The lower levels of security, in particular level C2, of the 
Orange Book were a wide commercial success in that C2 
certification became a common requirement for banking, 
insurance, and other security conscious systems. 

However, the Orange Book approach to high assurance 
systems fell short in two areas critical to modern secure 
systems software: 

§ The higher assurance levels (B3 and A1) required both 
mathematical verification of trusted system comp o-
nents and that those trusted systems components con-
tain significant security functionality (MAC, DAC, au-
diting, et al) that made mathematical verification of 
those trusted system components virtually impossible.  

§ Intersystem communication was not addressed in the 
core security architecture of the Orange Book. These 
trusted comp onents (and device drivers) typically all ran 
in privilege node in order to meet performance objec-
tives in past years.   Security critical application code 
also ran in privilege mode.  This was a nightmare to 
evaluate.  Such evaluations typically cost $100M. 

MILS 
MILS (Multiple Independent Levels of Security/Safety) 
represents a relatively new (10 years) approach to building 
secure systems in contrast to the older Bell and LaPadula 
theories on secure systems that represent the foundational 
theories of the DoD Orange Book.  

MILS makes mathematical verification possible for the 
core systems software by reducing the security functional-
ity to four key security policies: 

§ Information Flow (between partitions both internally to a 
RTOS and end to end between partitions in different 
computing platforms, this requires authentication and 
integrity for end to end protection) 

§ Data Isolation (private data remains private, this may 
require encryption for end to end protection) 

§ Periods Processing (the microprocessor itself will not be 
a covert channel to leak classified data to unclassified 
processes as the processor move from partition to part i-
tion within a partitioning RTOS, to close covert chan-
nels on a communication link may require full period en-
cryption, dummy traffic generators, etc). 

§ Damage Limitation (a failure in one partition will not cas-
cade to another partition, failures will be detected, con-
tained, and recovered from locally). 

MILS requires that the Partitioning Kernel and the trusted 
components of Middleware Services are implemented so 
that the security capabilities have the following character-
ics: 

§ Non-bypassable (the security functions cannot be cir-
cumvented) 

§ Evaluatable (the security functions small enough and 
simple enough to be mathematically verified and evalu-
ated) 

§ Always Invoked (the security functions are invoked 
each and every time) 

§ Tamperproof (subversive code cannot alter the function 
of the security functions by exhausting resources, over-
running buffers, or other forms of making the security 
software fail) 

A convenient acronym for these characteristics is NEAT. 
The MILS architecture allows the creation of  application 
code that is NEAT.  While most MILS-based application 
code is freed from this level of rigor because it is protected 
from and limited from damaging other applications, some 
applications will need the highest level of assurance.  These 
partitions with these applications will need to be NEAT. 
Such partitions are referred to as Reference Monitors. 

The MILS architecture was developed to resolve the diffi-
culty of certification of high assurance systems, by separat-
ing out the security mechanisms and concerns into man-
ageable components. A MILS system isolates processes 
into partitions, which define a collection of data objects, 
code and system resources. These individual partitions can 
be evaluated separately, if the MILS architecture is imple-
mented correctly. This divide and conquer approach exp o-
nentially reduces the proof effort for secure systems. To 
support these partitions the MILS architecture is divided 
into three layers: 

§ Partitioning Kernel—a very small (4,000 lines of code 
or less) mathematically verified piece of software 
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trusted to guarantee separation of time and space part i-
tioning, 

§ Middleware Services—most of the traditional operating 
system functionality including device drivers and a Par-
titioning Communications System to extend the scope 
of the separation provided by the Partitioning Kernel 
to inter-system communication, and 

§ Applications—responsible for enforcing application 
layer security policies. 

With most operating systems it is very difficult to prove 
that these requirements are being met.  Recently, however, 
the MILS architecture has emerged in which a micro kernel 
is responsible for: 

§ partitioning the computer into separate address spaces 
and scheduling intervals, 

§ guaranteeing isolation of the partitions, and 

§ supporting carefully controlled communications among 
them. 

Because that is all the kernel does, it can be very small – 
less than 4,000 lines of code.  This makes it amenable to the 
formal analysis methods, comprehensive documentation, 
and exhaustive testing required for certification.  The parti-
tioning kernel design is also very helpful in achieving flight 
safety approval under DO-178B, and in fact that is where 
this development got started. 

PARTITIONING KERNEL 
If we want to run a security function on the same computer 
as our application programs, where should it reside?  In 
order to be tamper-proof, it must be in a separate address 
space from any un-trusted application code.  And in order 
to be non-bypassable, it must be part of every input or out-
put service request issued by an application.  The natural 
solution, then, seems to be to put it in the operating system. 

But mixing security functions and other code in the operat-
ing system’s privileged kernel address space is less than 
optimal for two reasons: 

§ The security functions are often application-specific.  
And while many RTOSs are designed to allow some user 
customization, it would really be better not to have to 
make changes in the most sensitive part of the system.  

§ Since any code in the same address space as a security 
function could potentially interfere with the kernel’s en-
forcement of security, the entire kernel must be analyzed 
for weaknesses and malicious code. 

Enter the Partitioning Kernel. This is actually not new 
technology. John Rushby was describing the basic con-
cepts at least as early as 1981. But it is new to the commer-
cial RTOS world, where performance traditionally has 
trumped all other concerns.   

Any operating system that supports multiple address 
spaces supports the concept of partitions and provides 
some measure of isolation, both between partitions, and 
between any partition and the OS.  A partition requests an 
OS service by “trapping” to the kernel, i.e. by executing a 
special instruction that causes an interrupt.  This puts the 
computer in kernel mode, which allows the OS to do what-
ever it needs to do, including reading or writing I/O control 
registers or even modifying the memory map.  From here, 
the most efficient way for the OS to provide the service is to 
execute all of the service code in kernel mode.  This saves 
context switches, but it places a lot of code in the kernel 
that could perhaps reside elsewhere.   

What Rushby proposed was for the kernel to support care-
fully controlled communications between non-kernel parti-
tions (Figure 2).  The communication channels allow one 
partition to provide a service to another with minimal inter-
vention by the kernel.  RTOS services can thus be moved 
into non-privileged or partially privileged partitions, leaving 
behind only those functions that must execute in kernel 
mode.  Figure 2 shows isolated partitions communicating 
through kernel-mediated channels.  These channels are es-
tablished statically when the partitions are created. 

 

 
Figure 2 

The goal of moving code out of the kernel is to make the 
kernel small enough to be verified by formal analysis and 
proof-of-correctness methods.  A formal methods mathema-
tician at the National Security Agency (NSA) has said that 
1,000 lines of code would be ideal, but they would be willing 
to attempt something as large as 4,000 lines.  The smallest 
commercial kernel is  near the high end of that range.   

Obviously, a system built on a partitioning kernel will suffer 
more context switching overhead than would occur in a 
more conventional design.  This has been made more toler-
able by very careful design of the inter-partition communi-
cation services, and also by hardware advances.  In the 
current generation of PowerPC microprocessors for example, 
a full partition context switch can be completed in less than 
a microsecond.  That means that 10,000 partition switches 
per second will consume less than one percent of the proc-
essor throughput.  Partitioning is not free, but the cost has 
become much more tolerable. 
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So a practical, high-assurance, real time partitioning kernel 
is now within reach.  This kernel guarantees that partitions 
are isolated from each other, and that only explicitly author-
ized communication occurs among them. 

Safety and Security 
The military market for high-assurance security systems 
alone has not been large enough for the commercial RTOS 
vendors to justify investing in expensive evaluations.  How-
ever, the commercial avionics market has attracted their in-
vestment dollars, especially with the imminent adoption of 
Global Air Traffic Management (GATM) rules. 

The ARINC-653 standard was written specifically for avion-
ics computing, especially where safety of flight was a con-
cern.  It specifies an RTOS design very much like the parti-
tioning kernel just described, and with exactly the same 
goal:  to allow two or more programs to share a computer 
while guaranteeing that they cannot interfere with each 
other.  In an ARINC-653 system, both memory and process-
ing time are statically allocated to partitions using configu-
ration tables.  A static network of communication channels 
is also established among the partitions.  With the excep-
tion of a few kernel services, such as reading the real time 
clock, all input and output for a partition go through these 
channels.   

ARINC-653 specifies a generic framework for enforcing an 
application-specific information flow control security policy.  
Information can flow from one partition to another only in 
the ways specified in the static configuration tables, and the 
partitioning kernel guarantees that this is so. 

Middleware Services 
The middleware services layer provides for an extended 
scope of the separation concepts introduced by the part i-
tioner. Middleware services are concerned about end-to-
end data processing, and not just the single microprocessor 
data processing of the Partitioning Kernel. At the middle-
ware layer, we begin to enforce the more traditional con-
cepts of information flow. Each partition/address space in 
the system, no matter which microprocessor it is resident 
on, has a unique security label/classification. The system 
architect uses these labels to define the authorized commu-
nication between components. The labeling of the partitions 
and communication channels is used to satisfy the security 
policy. The middleware level is responsible for ensuring 
end-to-end security, through the following: 

1. Labeling. The middleware layer must ensure that mes-
sages sent between individual partitions are correctly 
labeled with the sender’s security classification. 

2. Filtering. The middleware layer is responsible for filter-
ing out any messages that are not appropriately la-
beled before delivering them to the recipient. 

3. Maintaining Information Flow Controls. The system 
architect designs the system with specific authorized 

information flow restrictions, and it is these restric-
tions that the middleware layer enforces. 

At the middleware layer we can introduce the concept of 
authorized information flow. If the system architect designs 
the system so that two partitions can communicate, then 
information flow between these partitions is authorized. A 
system can be designed to be a collection of isolated en-
claves, where partitions exist within a single enclave and 
there is no information flow between enclaves. The MILS 
architecture will now allow the use of computer security 
measures to build systems and achieve the same assurance 
levels as these “physically is olated component” systems. 

In the MILS architecture, all O/S code not necessary for 
performing Partitioning Kernel functions was moved out 
of privileged mode. Thus, by default, O/S service code (e.g. 
device drivers, file system, POSIX) has moved into the mid-
dleware layer. This is done to prevent various software and 
network attacks from elevating a processes privilege to an 
unauthorized level. Each enclave’s partition can be config-
ured to utilize a single set of O/S services code with it 
evaluated according to the enclave’s requirements.  

Application Layer 
MILS empowers the application layer to protect itself. And 
the application layer is responsible for enforcing application 
security policies. It is at this layer that the system provides 
for application-specific security policies. Any partition that 
processes data from more than one secure application 
realms must be considered a privileged partition.  

PARTITIONING COMMUNICATIONS 

SYSTEM 
The Partitioning Communication System is a portion of 
MILS Middleware responsible for all communication be-
tween MILS notes. 

The purpose of the PCS is to extend the protected environ-
ment of MILS kernel to multiple nodes.  The PCS was de-
veloped with a similar minimalist philosophy to MILS Parti-
tioning Kernel. 

The PCS extends the four MILS policies to include end-to-
end versions of these policies, but only these policies. 

§ End-to-End Information Flow 

§ End-to-End Data Isolation 

§ End-to-End Periods Processing 

§ End-to-End Damage Limitation 

Thus, the PCS Leverages the MILS Partition Kernel to en-
able the application layer entities to enforce, manage, and 
control their own application level security policies in such 
a manner that the application level security policies are non-
bypassable, evaluatable, always-invoked, and tamper-proof. 
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The result is a communications architecture that allows the 
security kernel and the PCS to share the responsibility of 
security with the application. 

PCS must provide the following capabilities: 

§ Strong identity of nodes within enclave 

§ Cryptographic separation of levels  

§ Cryptographic separation of communities of interest 

§ Bandwidth provisioning & partitioning  

§ Secure configuration of all nodes in enclave 

§ Secure application instantiation 

§ Secure clock synchronization 

§ Signed partition images 

§ Elimination of covert channels (both storage and timing) 

REAL-TIME MILS CORBA 
The synthesis of MILS and Real-time CORBA yield an un-
expected benefit. The flexibility of Real-time CORBA allows 
easier realization of MILS protection. 

The MILS architecture is all about location awareness.  A 
properly designed secure system built with MILS will by 

intent separate appropriate functions into separate part i-
tions to take advantage of the MILS partitioning protection. 

Real-time CORBA is all about location transparency. The 
application code of a properly designed distributed system 
built with Real-time CORBA will not be aware of the location 
of the different parts of the system. This great flexibility can 
be used to optimize performance by rearranging what parti-
tions each system object executes in. Mistakes in system 
layout can be corrected late in the development cycle. 

The combination of MILS with Real-time CORBA allows 
system engineers to rearrange the location of system func-
tions in order to better take advantage of the MILS parti-
tioning protection. 

MILS CAN HANDLE MLS 
While a MILS Partitioning Kernel is quite ignorant of the 
traditional Multi-Level Security (MLS) required for military 
and intelligence systems MILS is quite capable of support-
ing MLS systems.  MILS can be used to construct such 
systems because of the strong separation guarantees the 
MILS architecture and certification process. 
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Figure 3 shows the realization of a multi-level security system using the MILS architecture. The green blocks are user level 
partitions. Only the Micro Kernel (the Partitioning Kernel) can access any privileged hardware capabilities. Accordingly the 
device drivers are all shown executing outside of system privilege because they are not in the micro kernel (Partitioning Ker-
nel) address space. 

 

INDUSTRY SUPPORT 
At least three commercial RTOS vendors either have built, 
or are in the process of building, MILS-compliant operating 
systems: 

§ Green Hills Software, Inc. 

§ LynuxWorks, Inc. 

§ Wind River Systems, Inc. 

The U. S. Air Force, Boeing, Lockheed-Martin, Objective 
Interface Systems, Rockwell Collins, University of Idaho, 
and the National Security Agency are partnered in the effort 
to integrate several MILS security separation kernels with a 
Real-time CORBA middleware implementation.  The results 
of this effort should support an OMG standardization effort 
for high assurance Real-time MILS CORBA. 
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